Video Based Moving Object Tracking by Particle Filter
نویسندگان
چکیده
Usually, the video based object tracking deal with non-stationary image stream that changes over time. Robust and Real time moving object tracking is a problematic issue in computer vision research area. Most of the existing algorithms are able to track only in predefined and well controlled environment. Some cases, they don’t consider non-linearity problem. In our paper, we develop such a system which considers color information, distance transform (DT) based shape information and also nonlinearity. Particle filtering has been proven very successful for non-gaussian and non-linear estimation problems. We examine the difficulties of video based tracking and step by step we analyze these issues. In our first approach, we develop the color based particle filter tracker that relies on the deterministic search of window, whose color content matches a reference histogram model. A simple HSV histogram-based color model is used to develop this observation system. Secondly, we describe a new approach for moving object tracking with particle filter by shape information. The shape similarity between a template and estimated regions in the video scene is measured by their normalized cross-correlation of distance transformed images. Our observation system of particle filter is based on shape from distance transformed edge features. Template is created instantly by selecting any object from the video scene by a rectangle. Finally, in this paper we illustrate how our system is improved by using both these two cues with non linearity.
منابع مشابه
An Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملSpecified Object Tracking Problem in an Environment of Multiple Moving Objects
Video based object tracking normally deals with non-stationary image streams that change over time. Robust and real time moving object tracking is considered to be a problematic issue in computer vision. Multiple object tracking has many practical applications in scene analysis for automated surveillance. In this paper, we introduce a specified object tracking based particle filter used in an e...
متن کاملFixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets
Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملHuman Tracking using Particle Filter
Human tracking is the process of locating moving objects (human) over time using camera. It has wide number of applications like security and surveillance, traffic control, video editing, medical imaging etc. It can be a time consuming process due to the large amount of data contained in video. The objective of human tracking is to associate target objects in consecutive video frames. To initia...
متن کامل